Preconditioned Global FOM and GMRES Methods for Solving Lyapunov Matrix Equations

نویسندگان

  • Amer Kaabi
  • A. Kaabi
چکیده

This paper presents, a preconditioned version of global FOM and GMRES methods for solving Lyapunov matrix equations AX + XA = −BTB. These preconditioned methods are based on the global full orthogonalization and generalized minimal residual methods. For constructing effective preconditioners, we will use ADI spiliting of above lyapunov matrix equations. Numerical experiments show that the solution of Lyapunov matrix equation can be obtained with high accuracy by using the preconditioned version of global FOM and GMRES algorithms and this version are more robust and more efficient than those without preconditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients

In this paper‎, ‎we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD)‎. ‎We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual‎. ‎In particular‎, ‎the obtained upper...

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Weighted Versions of Gl-fom and Gl-gmres for Solving General Coupled Linear Matrix Equations

More recently, Beik and Salkuyeh [F. P. A. Beik and D. K. Salkuyeh, On the global Krylov subspace methods for solving general coupled matrix equations, Computers and Mathematics with Applications, 62 (2011) 4605–4613] have presented the Gl-FOM and Gl-GMRES algorithms for solving the general coupled linear matrix equations. In this paper, two new algorithms called weighted Gl-FOM (WGl-FOM) and w...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008